Foundations of Discrete Mathematics COT 2104

Practice 5

- 1. Determine whether or not each of the following relations is a function with domain {a, b, c, d}. For any relation that is not a function, explain why it isn't.
 - a) $f = \{(a, b), (a, c), (d, c)\}$
 - b) $f = \{(b, a), (b, b), (b, c), (b, d)\}$
 - c) $f = \{(d, a), (c, b), (a, d), (b, c)\}$
- 2. Determine whether each relation is a function. Identify the domain and the range.
 - a) $\{(2,10), (3,15), (4,20)\}$
 - b) $\{(-7,3),(-2,1),(-2,4),(0,7)\}$
 - c) $\{(-2,1), (0,1), (2,1), (4,1), (-3,1)\}$
- 3. Find the inverse of the following relations
 - a) $\{(1, 2), (2, 4), (3, 3), (4, 1)\}$
 - b) $\{(7,8),(-2,8),(3,-4),(8,-8)\}$
 - c) $\{(-1,3),(2,5),(-3,5),(2,0)\}$
- 4. Determine whether it is one-to-one, find a formula for the inverse
 - a) f(x) = x + 4
 - b) $f(x) = x^3 1$
 - c) f(x) = 4 / (x + 7)
- 5. Give an example of a function $N \rightarrow N$ which is
 - a) Onto but not one-to-one.
 - b) Neither one-to-one nor onto.
 - c) Both one-to-one and onto
- 6. Show that the following functions f: $A \rightarrow R$ is one-to-one. Find the range and the suitable inverse
 - a) $A = \{x \in R \mid x \neq -1/2 \}, f(x) = 3x / (2x + 1)$
 - b) $A = \{x \in R \mid x \neq -3 \}, f(x) = (x-3) / (x+3)$
- 7. Let $f = \{(1,3), (2, 2), (3, 4), (4, 1) \text{ and } g = \{(1, 4), (2, 3), (3, 1), (4, 2)\}.$
 - a) Find g^{-1} and $f^{\circ} g^{-1}$. Is g one-to-one? Explain.
 - b) Find $g \circ f$. Is $g \circ f$ one-to-one? Explain