Foundations of Discrete Mathematics
 COT 2104

Practice 5

1. Determine whether or not each of the following relations is a function with domain $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$. For any relation that is not a function, explain why it isn't.
a) $\mathrm{f}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{d}, \mathrm{c})\}$
b) $\mathrm{f}=\{(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{b}),(\mathrm{b}, \mathrm{c}),(\mathrm{b}, \mathrm{d})\}$
c) $\mathrm{f}=\{(\mathrm{d}, \mathrm{a}),(\mathrm{c}, \mathrm{b}),(\mathrm{a}, \mathrm{d}),(\mathrm{b}, \mathrm{c})\}$
2. Determine whether each relation is a function. Identify the domain and the range.
a) $\{(2,10),(3,15),(4,20)\}$
b) $\{(-7,3),(-2,1),(-2,4),(0,7)\}$
c) $\{(-2,1),(0,1),(2,1),(4,1),(-3,1)\}$
3. Find the inverse of the following relations
a) $\{(1,2),(2,4),(3,3),(4,1)\}$
b) $\{(7,8),(-2,8),(3,-4),(8,-8)\}$
c) $\{(-1,3),(2,5),(-3,5),(2,0)\}$
4. Determine whether it is one-to-one, find a formula for the inverse
a) $f(x)=x+4$
b) $f(x)=x^{3}-1$
c) $f(x)=4 /(x+7)$
5. Give an example of a function $\mathrm{N} \rightarrow \mathrm{N}$ which is
a) Onto but not one-to-one.
b) Neither one-to-one nor onto.
c) Both one-to-one and onto
6. Show that the following functions $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{R}$ is one-to-one. Find the range and the suitable inverse
a) $\mathrm{A}=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{x} \neq-1 / 2\}, \mathrm{f}(\mathrm{x})=3 \mathrm{x} /(2 \mathrm{x}+1)$
b) $A=\{x \in R \mid x \neq-3\}, f(x)=(x-3) /(x+3)$
7. Let $\mathrm{f}=\{(1,3),(2,2),(3,4),(4,1)$ and $g=\{(1,4),(2,3),(3,1),(4,2)\}$.
a) Find g^{-1} and $f^{\circ} g^{-1}$. Is g one-to-one? Explain.
b) Find $g^{\circ} \mathrm{f}$. Is $\mathrm{g}{ }^{\circ} \mathrm{f}$ one-to-one? Explain
